Which RAID Settings Should I Use For My NAS?

RAID 1 (Mirror)

A NAS (Network Attached Storage) puts storage onto your network, where it can be accessed by many computers. They often have more than one hard drive which can allow you to have automated copies of your data, which is known as RAID. A common type of RAID found on NAS devices is RAID 1, which will make two hard drives into a mirror copy of one another. Some manufacturers call RAID 1 Safe mode. If you have a NAS with two 1TB hard drives and set them to RAID 1 mirroring, instead of 2TB of storage (1TB x2) you only get 1TB. Everything you store to the NAS gets saved to both drives automatically. The theory is that if one of the drives fail, you can access all of the data from the other one. In practice that is not always the case. More on that later.

RAID 1 Mirror Animation
RAID 1 Mirror Animation

RAID 0 (Stripe)

Another common NAS option is RAID 0. The “R” in RAID stands for redundant, however there is no redundancy in RAID 0, so it’s not a real RAID type. If you setup the same two 1TB disks as RAID 0, you will get a 2TB volume to store your data on. The problem is that every single file you write to the NAS will be split into tiny pieces and distributed across both drives. If one drive fails, you not only lose the data from that failed drive, but also from the non-failed drive as it only contains half the pieces of each file. RAID 0 should never be used for long term storage, but can be fast so is often used for video editing.

RAID 0 Stripe
RAID 0 Stripe

So that’s the hardware taken care of. What other things should you look out for when choosing a NAS?

Another problem with most NAS devices is the non-standard filesystems they use to store the data on the disks. If the NAS itself fails, you cannot usually read the disks by attaching them to a standard PC. So even in RAID 1 mirror mode, you could end up with no usable copies of your data. Most NAS drives run a simplified version of Linux, but only some of them use standard Linux filesystems like ext2/3/4.

Backup my backup?

Some NAS drives have a USB port to allow you to backup the data to an external hard drive. This is great, as long as you can access the backup data on a regular PC, and it doesn’t need to go through the NAS. You can imagine why that would be a problem.

To summarise, NAS drives can be a great way to upgrade your home or small office storage. They can allow collaboration and sharing of files between users, and should simplify your backup process. Just remember that a NAS is a small server that needs to be backed up as a matter of urgency. As long as you have that covered then a NAS can be a smart addition to your network.

SSD Data Recovery

SSD Data Recovery
SSD Data Recovery

SSDs (Solid State Drives) may one day become the standard form of storage in computers. Apple laptops are already heading that way. There are certainly many advantages when comparing SSDs to HDDs (Hard Disk Drives), however they do bring their own problems, which are often not well reported. We don’t care how good SSDs can be. We care about how they fail. It’s common to hear things like: “I’m replacing my hard drive with an SSD so I won’t have to worry about it crashing again.” While this is technically true – there are no moving parts to crash – there are plenty of other ways an SSD can fail. Whether it’s technically crashed or not doesn’t matter at all when you can’t access your files. It’s a shame but an SSD does not get you out of the boring task of running regular backups.

There are some pros and cons which specifically affect data recovery from SSDs. I haven’t listed things like battery life or read / write speed as they are not relevant when it comes to recovering data from them.

SSD Data Recovery Pros:

  • Shock resistance. No moving parts to crash.
  • Just as susceptible to filesystem issues, deletion, reformatting, bad sectors etc which can be recovered using existing equipment.

SSD Cons:

  • False sense of security. The word reliable comes up a lot in SSD marketing with phrases like “More reliable, faster, and more durable than traditional magnetic hard drives.” Maybe research exists that shows SSDs are less prone to failure but it doesn’t seem to be the case at the moment. Anything that holds your valuable data runs the risk of getting drenched, getting stolen, getting lost, and that’s before we even take general failures into account.
  • Susceptible to electronic failure, Maybe more so than a hard drive as the storage and electronics are combined in SSDs. Some of the most common hard drive failures are caused by errors in the firmware which controls the performance of the drive. SSDs have very complex firmware, which opens the possibility of firmware corruption. In most cases firmware corruption will block access to your data.
  • Encryption. Most modern SSDs encrypt the data at a hardware level, which makes it impossible to remove data chips and extract data from them externally (you can do it, but the data is encrypted). The keys to the encryption are often stored within the controller chip, so if that fails, you could be locked out of your data for good. Modern encryption works well. You can’t get round it.
  • Wear-levelling algorithms. Which move the data around the SSDs to improve performance, can make recovery difficult as these algorithms would need to be taken into account when accessing a failed SSD. They don’t store data in logical order like hard drives do.

iPhone Data Recovery – Obstacles


iPhone Data Recovery
iPhone Data Recovery

When developing our iPhone data recovery process we had to make a few decisions about the devices we can support. The newer iPhones (4s +) are not accessible in the same way as older models.

With the iPhone 4 and below we can extract the data using a forensically clean process. What this means is that we can take the data off without writing anything to the NAND chips (storage) inside the iPhone. This fits in perfectly with our regular data recovery process as we never write data to a device we receive.

With the iPhone 4s, Apple changed the part of the system we use to access the iPhone’s memory. There is a chance that a new method of extraction for iPhone 4s will become available, but until it does we will not be recovering files from these devices.

Physical damage

iPhones store their data on NAND chips which are soldered to the main circuit board of the phone. The data can only be correctly decoded if we also have access to other parts of the circuit board, so it is crucial that the iPhone is electronically functional. If water damage has shorted the iPhone then we have no way to access the data externally. It’s not that it’s impossible, just that the work would be unreasonably expensive and time consuming.

Deleted Files

Another potential barrier for iPhone recovery is down to the way files are stored. Since iOS4 most files including iPhone camera photos and videos are encrypted before being written to storage, using unique encryption keys. This means every file ends up with a different header. When files are deleted there is nothing to distinguish a photograph from any other random collection of bytes.

Another problem with the file based encryption is that if you restore the iPhone using iTunes, those encryption keys get erased and new ones are generated. This prevents recovery of the old data, which is good for security but bad for data recovery.


Data Recovery Success Rates October 2012

October was a pretty busy month for us, so I thought it would be a good chance to check on our success rate. As you can see from the graphic below, we have a great success rate of at least 69%. We always keep an eye on our success rate, to make sure we are still recovering as many drives as possible. Our success rate is often higher than 69% but we did get a few non-recoverable drives which had suffered physical media damage. For an example of why those are unrecoverable, have a look at a photo of a head crash. (Tip: Those dark circular lines are not meant to be there!)

Data Recovery Success Rate October 2012
Data Recovery Success Rate October 2012

Of those successful jobs, a whopping 90% of them were recovered without even needing to repair them in our cleanroom. This is interesting as cleanroom facilities are often advertised as one of the most important factors when choosing a data recovery company. Not to undermine the need for cleanroom facilities, but they are not required for most hard drives.

Data Recovery Success Rate October 2012 Split
Data Recovery Success Rate October 2012 Split

In the graphic above we have classified non-cleanroom jobs as external, and cleanroom jobs as internal.


How a Data Recovery Engineer Sees RAID

As somebody recovering data from RAID arrays, my view on them is a little different to the norm. In most cases I would say avoid RAID wherever possible. Simplicity is key.

Below are my answers to some real questions I have received from clients about RAIDs.

Why did this RAID disk fail?

Hard drive failure is not unusual and is often not avoidable. The truth is that all hard drives fail eventually, whether they are used in a RAID or not. Even though a RAID system can provide some fault tolerance from physical drive failure, they do have limits. A RAID5 on three disks for example can only handle a single drive failure at any one time. It is common for a second disk to fail whilst the other disk is being replaced. This is when RAID recovery is required; to first access the failed drives, and then rebuild the RAID. The best protection against RAID failure is to make backups. Backups in as many formats, in as many different physical locations as possible.

Why did the server fail so badly? Isn’t RAID meant to prevent this?

A 3-disk RAID5 can only cope with one bad disk. This doesn’t help when two drives fail at the same time. Although a RAID array can provide some leeway when it comes to disk failures, it doesn’t always help when you have multiple failures in quick succession. Adding more disks to the RAID can provide more redundancy, however this costs more money, and also adds complexity when things go wrong. Also you could be in a similar position if three disks happen to fail next time. A live system could fail at any time so prepare for the worst. Backups are cheap, and take a relatively short amount of time. RAID recovery can be expensive and cause unnecessary downtime.

Why couldn’t our IT support recover this?

We are a specialist data recovery company, with access to tools and resources which are not available to IT Support staff. We have spent the last fifteen years perfecting the process of extracting data from failed & failing hard drives and RAID arrays. For the best chance of recovery, we like to get the drives as soon after failure as possible. If more work gets carried out on the drives, things can be made much worse.

How can we avoid this happening again in the future?

To avoid similar problems in the future, the best way forward is some form of regular backup. The backups should be verified and then tested / restored as often as possible. This is where disaster recovery comes in, which can involve simulating certain types of failure and making sure you can get up and running again from your backups. At the very least, it wouldn’t hurt to put the really crucial business files onto an external hard drive every few weeks and store it in your company safe. It’s low-tech but at least you could plug it in to any PC and access the important business data if required as a last resort.

I’m not against RAIDs. They do have their place, but cannot be relied upon as a replacement for regular backups.

We have more articles about RAID here.

How Your HDS722020ALA330 Looks To Us

This immense 2TB iMac drive may be heavy, but have you ever wondered why? 

HDS722020ALA330 2TB iMac Drive
HDS722020ALA330 2TB iMac Drive

When we recover these drives we often have to work on individual heads. As you can see from the image, this monster has 10 heads (the first is numbered zero). This means there are 5 spinning disks inside the drive.

From the outside, the only clue that these drives are so rammed full of disks is their weight. They are no bigger physically than any other desktop hard drive.

Hard Drive Crash During OS Upgrade

It is common to hear of hard drive problems happening as a result of a system update, or operating system upgrade. We have a theory that could possible explain this.

First of all, you should always make a full backup of your system before installing an update. It’s not unheard of for updates to go wrong, so this is crucial.

Hard Drive Crash During OS Upgrade / Update

During a software update, a large amount of data gets read and written to and from the hard drive. If the hard drive is functioning fine, this happens without issues. Installing updates is a normal (and necessary) part of computing.

If the hard drive is not quite 100%, then maybe running a software update is the last straw. It puts the failing drive under a bit of extra strain and bang. The hard drive fault which had been lying dormant for months, now rears it’s head and the hard drive gives up, leaving you stranded from your data. Bear in mind that the drive would have failed eventually anyway, but the heavy disk usage probably accelerated the failure.

There are a couple of things to look out for, that may predict an imminent hard drive failure. (Please don’t wait for these signs before backing up. Do it now!)

  • Warnings or messages during boot up
  • Computer being unresponsive / slow at times
  • The dreaded beachball animation (On the Mac)
  • Clicking / chirping noises

If you are running any computer with important data, you should back up immediately and as often as possible. That way it doesn’t matter if your hard drive fails; just throw in a new drive and reload it from your backup.

Common Data Recovery Myths Exposed

Myth 1: When files are deleted they are gone forever.

Fact: When files are deleted they are actually only removed from an index. Unless you then overwrite those sectors with new data, the files will still be there. If you delete a file it is important to stop using the computer. Even browsing the internet causes cache files and images to be downloaded to the hard drive, potentially overwriting the deleted files.

Myth 2: Putting a hard drive in the freezer will bring it back to life.

Fact: This is an old one, which will not die. We have never had to put a hard drive in a freezer. There is only anecdotal evidence that freezing a hard drive helps in any way. One of the most common types of hard drive failure is firmware corruption, which cannot be fixed in a freezer. I would be worried about introducing condensation into the drive, which could be devastating. If anyone knows where this idea came from, or how the freezer is supposed to help, then I would love to hear about it.

Myth 3: The FBI can recover anything.

Fact: The FBI are bound by the same laws of physics as we are. If a hard drive has had a head crash, and scraped the magnetic coating off the platter, there is no data left to recover. You cannot read magnetic data from particles of dust! Even the FBI can’t recover that.

Myth 4: The best way to recover a hard drive is by swapping the platters out.

Fact: In almost all cases, you should not disturb the alignment of the platters. They are manufactured within strict tolerances which cannot be recreated outside of a manufacturing environment. If the problem lies with the on-disk firmware, electronic components, or read / write heads, then swapping the platters would not solve anything.

Note – If the spindle motor gets stuck then it can be necessary to swap the platters, but only as a last resort.

What Is Hard Drive Firmware?

What is Hard Drive Encrytion

Hard drive firmware is the embedded software which controls the running of your hard drive. Most of it is stored within hidden sectors on the hard drive, and in normal operation you wouldn’t know it was there. Whenever you power up a drive, the firmware makes the motor spin, starts the read / write heads, and checks against a list of bad sectors. Only then will the computer be able to access the data area and allow you to see your files. If there is a problem with the firmware, the drive will get stuck and you won’t be able to access your data at all.


Failed firmware is almost impossible to diagnose without specialist equipment. In fact, it is hard to confirm that the firmware is faulty at all. Many hard drive problems manifest themselves in the same way; by clicking, or spinning down, or just generally not being identified by the PC. You shouldn’t start changing components until you know where the problem lies.


In the early days, most firmware could fit onto the electronic circuit board; simply swapping a damaged PCB with a good one was a common fix. Firmware is now too large to fit on the PCB, so the PCB contains just a very simple boot loader which starts off the drive and then loads the firmware from the disk surface. This means that swapping the PCB is no longer a common fix, and won’t work on most modern hard drives.

We have specialist hardware and software that allows us to check and repair the firmware on most hard drives. We have also dealt with many of these problems before and have a huge database of previous experience to draw on.

Recovering Deleted Data

In the vast majority of cases, deleted data is actually still lurking around on your hard drive. If you put data in the Recycle Bin or Trash, and them empty it, all you are actually doing is telling the system that it can reuse those parts of the disk when it wants. Until you replace those areas with new data, the old data will still be there.

Recovering Deleted Data

The Filing Cabinet

The tried and trusted analogy is of a filing cabinet. When you delete a file, you are removing the index card from the front of the drawer, but the actual file is still in there.

This is why it is really important to switch off your computer as soon as possible if you have accidentally deleted some files. You may not realise but even small actions like checking e-mail or browsing the internet can write cache files to the disk. That is when data could be lost.

Overwritten / Deleted Data

We often hear about the FBI being able to recover overwritten files. While this may have been possible on very old – low capacity hard drives (~100MB), it is unlikely to be possible on modern hard drives. The magnetic material is far too densely packed. Even then, it would only be tiny fragments of data recovered, and not whole files.

The Problem With SSDs

Solid state drives bring a whole new problem of their own. Due to the way the data is distributed around the device, known as wear levelling, you can never be sure of which sector you are writing or overwriting. Wear levelling is necessary to prolong the life of an SSD, but it means the drive could be moving data around behind the scenes, making deleted files much more difficult to track down.


In most cases, we can recover deleted files with the original file names and folders. With deleted Mac data, this is often not possible. In that case we have to use a special type of scan, which finds all files of a given type and saves them to numbered files. This means camera photos may be recovered into a JPG folder, with files named like photo0001.jpg, photo0002.jpg and so on.

If required we can process certain types of these files into more meaningful order. For photos we can arrange into folders by date taken, and for music files we can arrange into Artist / Album order.

The Important Bit

If you accidentally delete some files, they are likely to be recoverable. It’s the actions you take next which can make the recovery difficult – if not impossible.